A Convex Optimization Model and Algorithm for Retinex
نویسندگان
چکیده
منابع مشابه
An Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function
In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...
متن کاملA Hybrid Algorithm for Convex Semidefinite Optimization
We present a hybrid algorithm for optimizing a convex, smooth function over the cone of positive semidefinite matrices. Our algorithm converges to the global optimal solution and can be used to solve general largescale semidefinite programs and hence can be readily applied to a variety of machine learning problems. We show experimental results on three machine learning problems. Our approach ou...
متن کاملA HYBRID ALGORITHM FOR SIZING AND LAYOUT OPTIMIZATION OF TRUSS STRUCTURES COMBINING DISCRETE PSO AND CONVEX APPROXIMATION
An efficient method for size and layout optimization of the truss structures is presented in this paper. In order to this, an efficient method by combining an improved discrete particle swarm optimization (IDPSO) and method of moving asymptotes (MMA) is proposed. In the hybrid of IDPSO and MMA, the nodal coordinates defining the layout of the structure are optimized with MMA, and afterwards the...
متن کاملAn optimal algorithm for bandit convex optimization
We consider the problem of online convex optimization against an arbitrary adversary with bandit feedback, known as bandit convex optimization. We give the first Õ( √ T )-regret algorithm for this setting based on a novel application of the ellipsoid method to online learning. This bound is known to be tight up to logarithmic factors. Our analysis introduces new tools in discrete convex geometry.
متن کاملAn algorithm for approximating nondominated points of convex multiobjective optimization problems
In this paper, we present an algorithm for generating approximate nondominated points of a multiobjective optimization problem (MOP), where the constraints and the objective functions are convex. We provide outer and inner approximations of nondominated points and prove that inner approximations provide a set of approximate weakly nondominated points. The proposed algorithm can be appl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2017
ISSN: 1024-123X,1563-5147
DOI: 10.1155/2017/4012767